Муниципальное бюджетное общеобразовательное учреждение «Новоалейская средняя общеобразовательная школа» Третьяковского района Алтайского края

РАССМОТРЕНО	СОГЛАСОВАНО	УТВЕРЖДЕНО
на педагогическом совете	заместитель директора по УВР	и.о директора школы
Протокол №1 от «29» августа 2024 г.	Белоусов Е.К. Протокол №1 от «29» августа 2024 г.	Григорьева Л.В. Приказ №53 от «29» августа 2024 г.

Дополнительная общеобразовательная общеразвивающая программа «Цифровая лаборатория физического эксперимента» на 2024 – 2025 учебный год

Возраст обучающихся 14-16 лет (7-9 класс) срок обучения 1 год направленность: **естественно-научная**

Разработчик: Белоусов Евгений Константинович

с. Новоалейское 2024 г.

2. ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Дополнительная общеобразовательная общеразвивающая программа «Цифровая лаборатория физического эксперимента» является программой естественно-научной направленности, профиль — физика.

Актуальность программы.

Физика как наука о наиболее общих законах природы, вносит существенный вклад в систему знаний об окружающем мире. Ее основная практико-ориентированная (экспериментальная) составляющая имеет важное значение в развитии современных научно-технологических направлений в таких областях, как генетика, нано-электроника, физическая химия и т.д. Цифровизация информации крайне необходима для точного исследования объектов мира галактик и элементарных частиц. Использование современного цифрового оборудования по физике позволяет наглядно, эффективно проанализировать и предсказать результаты новых экспериментальных результатов.

Отличительные особенности программы Программа «Цифровая лаборатория физического эксперимента» рассчитана на 34 часа, разделенных на 5 разделов (модулей):

- Фазовые переходы.
- Постоянный электрический ток.
- Постоянное магнитное поле.
- Элементы статики и гидростатики.
- Колебательные системы.

Каждый раздел обучения представлен как этап работы, связанный с решением экспериментальной задачи средствами цифрового лабораторного оборудования.

Содержание программы ориентирует обучающихся на постоянное взаимодействие друг с другом и преподавателем, решение практических задач осуществляется с использованием методики обработки результатов экспериментальных данных. Также программа ориентирует обучающихся на поиск разных подходов к решению поставленной задачи, с использованием полученных знаний в рамках практической деятельности.

Программа дает возможность раскрыть изучаемый раздел с цифровой точки зрения, взглянуть на решение экспериментальной задачи под новым углом для достижения максимального результата.

Адресат программы Программа «Цифровая лаборатория физического эксперимента» предназначена для детей от 14 до 16 лет.

В группы принимаются обучающиеся 7-9 классов. Группа может состоять из детей одного возраста или быть разновозрастной. Для изучения некоторых тем модулей 9 класса необходим краткий теоретический блок для

группы 8 класса. Для изучения некоторых тем 8 класса необходим краткий теоретический блок для группы 7 класса.

Для вхождения в образовательный процесс в рамках данной программы необходим профильный уровень знаний по математике и информатике, т.к. для работы с цифровой лабораторией необходимо уметь графически интерпретировать информацию и верно варьировать в компьютерной среде программы параметры выбранной модели.

Так как программа разделена на модули и предполагает большое количество экспериментальной работы, предполагается формирование минигрупп (по 2 человека в каждой) для достижения максимального результата. Форма обучения — очная, работа в мини-группах. Режим занятий, периодичность и продолжительность занятий.

Продолжительность занятий исчисляется в академических часах — 40 минут, между занятиями установлены 10-минутные перемены.

Педагогическая целесообразность Педагогическая целесообразность этой программы заключается в том, что, она является целостной и непрерывной в течении всего процесса обучения, и позволяет школьнику шаг за шагом раскрывать в себе творческие возможности и самореализоваться в современном мире. Проведение и обработка экспериментальных результатов каждой задачи формирует общую картину миропонимания и способствует развитию научного способа мышления.

Цель программы: формирование целостной картины изучаемых природных явлений, освоение элементов исследовательской деятельности, ознакомление с методиками обработки экспериментальных результатов с использованием цифровой образовательной среды, подготовка обучающихся к участию в конференциях и фестивалях, олимпиадах естественно-научной направленности.

Задачи дополнительной общеразвивающей программы:

Образовательные:

- знакомство с принципом работы датчиков цифровой лаборатории по физике;
- формирование навыков составления алгоритмов обработки экспериментальных результатов в оболочке программы цифровой образовательной среды;
- формирование навыков работы с цифровыми датчиками и вспомогательным лабораторным оборудованием;
- умение анализировать экспериментальные данные и их представление в графическом или другом символьном виде.
- формирование навыков исследовательской деятельности по предметам естественно-математического цикла в процессе анализа и обработки экспериментальных данных для обоснования и аргументации рациональности деятельности в рамках проектной деятельности.

Развивающие: – способствовать развитию творческих способностей каждого ребенка на основе личностно-ориентированного подхода;

- развить интерес к физике, как экспериментальной науке;
- развитие творческого потенциала и самостоятельности в рамках минигруппы;
- развитие психофизических качеств, обучающихся: память, внимание, аналитические способности, концентрацию и т.д.

Воспитательные:

- формирование ответственного подхода к решению экспериментальных задач;
- формирование навыков коммуникации среди участников программы;
- формирование навыков командной работы.

Условия реализации программы. Мотивационные условия

На учебных занятиях и массовых мероприятиях особое место уделяется формированию мотивации обучающихся к занятию дополнительным образованием. Для этого:

- удовлетворяются разнообразные потребности обучающихся: в создании комфортного психологического климата, в отдыхе, общении и защите, принадлежности к детскому объединению, в самовыражении, творческой самореализации, в признании и успехе;
- дети включаются в практический вид деятельности при групповой работе, с учетом возрастных особенностей и уровнем сохранности здоровья;
- на занятиях решаются задачи проблемного характера посредством включения в научно-исследовательскую деятельность;
- проводятся профессиональные пробы и другие мероприятия, способствующие профессиональному самоопределению обучающихся.

Планируемые результаты

По итогам обучения по программе ребенок демонстрирует следующие результаты:

- знает принципы работы на оборудовании цифровой лаборатории по физике;
- знает алгоритмы обработки экспериментальных результатов в цифровой образовательной среде;
- правила техники безопасности при работе с экспериментальными установками;
- умеет генерировать цифровые датчики с вспомогательным лабораторным оборудованием; умеет анализировать, обрабатывать экспериментальные данные, проверять достоверность полученных результатов.

3.Содержание учебного плана

Раздел	Тема	Кол-во часов			Форма
			практ	всег	подведения
		Я	ика	0	итогов
Фазовые переходы	1. Вводное занятие:	2	0	2	Опрос
	Программное обеспечение				
	«STLAВ». Техника				
	безопасности				
	2. Определение удельной	1	2	3	Опрос,
	теплоемкости				наблюдение,
	металлического шарика				собеседование,
	3. Изучение относительной	1	2	3	дополнительное
	влажности горячего и				творческое
	холодного воздуха.				задание, анализ
					достоверности
					результатов
Постоянный электрически	1. Построение вольт-амперной	1	2	3	Опрос,
й ток	характеристики лампы				наблюдение,
	накаливания.				собеседование,
	2. Изучение зависимости	1	2	3	дополнительное
	сопротивления спирали				творческое
	резистора от				задание, анализ
	температуры.				достоверности
					результатов
Постоянное магнитное поле	1. Магнитное поле прямого	1	2	3	Опрос,
	проводника с током				наблюдение,
	2. Зависимость магнитного	1	2	3	собеседование,
	поля полосового магнита				дополнительное
	от расстояния				творческое
					задание, анализ
					достоверности
					результатов
Элементы статики и	1. Определение плотности	1	2	3	Опрос,
гидростатики	деревянной линейки МОЖГА				наблюдение,
					собеседование,
					дополнительное
	2. Изучение	1	2	3	творческое
	зависимости давления в				задание, анализ
	жидкости от глубины				достоверности
	погружения.				результатов
Колебательные системы	1. Гармонические колебания.	1	2	3	Опрос,
	Определение характеристик				наблюдение,
	колебательного движения				собеседование,
	пружинного маятника				дополнительное
	2. Анализ электромагнитных	2(13)	3(21)	5(34)	творческое
	колебаний конденсатора в				задание, анализ
	цепи переменного тока				достоверности
	3.Подготовка к				результатов
	экспериментальным турам				

олимпиад	Всего в скобках		

4. Календарно-тематическое планирование

№1/	Тема занятия	Ко	Дата	Дата	Форма	Примеч
П		ли	пров	пров	проведения	ание
		чес	еден	еден		
		ТВО	ия	ия		
		час	план	факт		
		ОВ				
1-4	Технология подключения	4			Групповая	
	цифрового оборудования				работа	
	к лабораторным					
	установкам					
5	Определение удельной	1			Отработка	
	теплоемкости				результатов	
	металлического шарика				эксперимента	
					льных	
					исследований.	
6	Абсолютная и	1			Выполнение	
	относительная влажность				творческого	
	воздуха				задания	
7	Способы измерения	1			Работа в	
	относительной влажности				парах	
	воздуха					
8	Изучение относительной	1			Групповая	
	влажности горячего и				работа по	
	холодного воздуха				анализу	
					достоверност	
					и результатов	
9	Постоянный	1			Фронтальная	
	электрический ток				работа	
10	Изучение мультидатчика	1			Индивидуаль	
					ная работа	
11	Построение	1			Анализ	
	вольтамперной				достоверност	
	характеристики лампы				и результатов	
	накаливания					
12	Изучение зависимости	1			Парная работа	
	сопротивления спирали					
	резистора от температуры.					
	(теория)					
13	Зарядка и обслуживание	1			Индивидуаль	
	мультидатчика				ная работа	
14	Изучение зависимости	1			Наблюдение,	
	сопротивления спирали				собеседовани	
	резистора от температуры				е, анализ	

	(практика)		достоверност
	(практика)		и результатов
15	Магнитное поле прямого	1	Парная работа
13	проводника с током	1	Парная расота
	(теория)		
16	Последовательность	1	Индивидуаль
10	подключения датчика при	1	ная работа
	помощи беспроводного		nun puootu
	канала Bluetooth		
17	Магнитное поле прямого	1	Анализ
17	проводника с током		достоверност
	(практика)		и результатов
18	Зависимость магнитного	1	Групповая
10	поля полосового магнита	1	работа
	от расстояния (теория)		pacera
19	Магнитное поле	1	Дискуссия с
	постоянных магнитов	_	демонстрацие
			й
20	Изучение работы датчика	1	Индивидуаль
	магнитного поля		ная работа.
			Дополнительн
			ое творческое
			задание.
21	Определение плотности	1	Работа в
	деревянной линейки		парах
	МОЖГА (теория)		
22	Способ использования	1	Беседа, работа
	цифровых весов		в группе
23	Определение плотности	1	Индивидуаль
	деревянной линейки		ная работа
	МОЖГА с помощью		
	ЛЦИ-16 (практика)		
24	Изучение зависимости	1	Круглый стол
	давления в жидкости от		на основе
	глубины погружения		примеров из
	(теория)		жизни
25	Изучение работы	1	Работа в
	мультидатчика с		парах
	чувствительными		
	сенсорами и электродами.		
26	Изучение зависимости	1	Индивидуаль
	давления в жидкости от		ная работа с
	глубины погружения		анализом
	(практика)		достоверност
			и результатов.
27	Гармонические колебания	1	Круглый стол.
	Определение		Дискуссия.
	характеристик		
	колебательного движения		

пружинного маятника (теория)		
Изучение подключаемых сенсор - электродов	1	Работа в парах на устойчивом диалоге
Определение характеристик колебательного движения пружинного маятника (практика)	1	Наблюдение, анализ результатов.
Конденсатор в цепи переменного тока (теория)	1	Групповая работа
Анализ электромагнитных колебаний конденсатора в цепи переменного тока (теория)	1	Групповая работа
Изучение расчетной модели «Колебательный контур» из программного обеспечения.	1	Работа в парах
Анализ электромагнитных колебаний конденсатора в цепи переменного тока.	1	Работа в парах
Подготовка к экспериментальным турам олимпиад	1	
	(теория) Изучение подключаемых сенсор - электродов Определение характеристик колебательного движения пружинного маятника (практика) Конденсатор в цепи переменного тока (теория) Анализ электромагнитных колебаний конденсатора в цепи переменного тока (теория) Изучение расчетной модели «Колебательный контур» из программного обеспечения. Анализ электромагнитных колебаний конденсатора в цепи переменного тока. Подготовка к экспериментальным турам	(теория) 1 Изучение подключаемых сенсор - электродов 1 Определение характеристик колебательного движения пружинного маятника (практика) 1 Конденсатор в цепи переменного тока (теория) 1 Анализ электромагнитных колебаний конденсатора в цепи переменного тока (теория) 1 Изучение расчетной модели «Колебательный контур» из программного обеспечения. 1 Анализ электромагнитных колебаний конденсатора в цепи переменного тока. 1 Подготовка к экспериментальным турам олимпиад 1

5. Оценочные и методические материалы

Методическое обеспечение программы включает приёмы и методы организации образовательного процесса, дидактические материалы, техническое оснащение занятий.

Материально-техническое обеспечение:

- 1. Датчики цифровой лаборатории STlab:
 - датчик относительной влажности (от 0 до100%); цифровой датчик температуры (от 20 до 120 \circ C);
 - цифровой датчик абсолютного давления (от 0 до 500 кПа);
 - датчик магнитного поля (от -80 до 80 мТл);
- датчик напряжения (от -2 до 2 B; от -5 до 5 B; от -10 до 10 B; от-15 до 15 B);
 - датчик тока (от -1 до 1 А);
 - датчик акселерометр (2g, 4g, 8g, 16g);

- USB двухканальный осциллограф (от 0 до 100 В); ноутбук с программным обеспечением.
- 2. Вспомогательное оборудование:
 - металлический шарик;
 - мерные стаканы, мензурки, емкости до от 250 мл до 500 мл с горячей, холодной водой;
 - электрическая плитка;
 - лампа накаливания;
 - источник питания;
 - соединительные провода;
 - ключ;
 - реостат;
 - спиральный резистор или спираль;
 - горелка (свечка);
 - резисторы или магазин сопротивлений;
 - полосовой магнит;
 - прямой проводник;
 - деревянная линейка (от 0-30 см), любая линейка, карандаш;
 - электронные весы (от 0 до 200 г);
 - монетка;
 - поплавок или прямоугольная коробочка с отверстием для датчика;
 - акселерометр (датчик ускорения) на пружине известной жесткости;
 - штатив с лапкой и муфтой;
 - конденсатор постоянной емкости или магазин конденсаторов.

Организация рабочего пространства, обучающегося осуществляется с использованием здоровьесберегающих технологий. В ходе занятия в обязательном порядке проводится физкультпаузы, направленные на снятие общего и локального мышечного напряжения от компьютера с цифровой лаборатории. В содержание физкультурных минуток включаются упражнения на снятие зрительного и слухового напряжения, напряжения мышц туловища и мелких мышц кистей, на восстановление умственной работоспособности.

Для обеспечения наглядности и доступности изучаемого материала педагог использует различные методические и дидактические материалы.

Наглядные пособия: – схематические (цифровое оборудование, схемы, презентации, алгоритмы);

- естественные и натуральные (вспомогательное оборудование для практических работ);

- объемные (макеты);
- иллюстрации, слайды, графики, фотографии и рисунки экспериментальных результатов измерений; звуковые (видеоматериалы).

Информационное обеспечение программы Интернет-ресурсы:

Видеоматериалы по работе на платформе STLAB. // URL: https://dml32.ru/

Список литературы:

Нормативные правовые акты

- Федеральный закон «Об образовании в Российской Федерации» от 29.12.2012 № 273-Ф3.
- Указ Президента Российской Федерации «О мерах по реализации государственной политики в области образования и науки» от 07.05.2012 № 599.
- Указ Президента Российской Федерации «О мероприятиях по реализации государственной социальной политики» от 07.05.2012
 № 597.
- Распоряжение Министерства Просвещения от 12 .01.2021 № Р-6 «Об утверждении методических рекомендаций по созданию и функционированию в общеобразовательных организациях, расположенных в сельской местности и малых городах, центров образования естественно-научной и технологической направленностей».
- Приказ Министерства просвещения РФ от 09.11.2018 г. № 196
 «Об утверждении Порядка организации и осуществления образовательной деятельности по дополнительным общеобразовательным программам».
- Постановление Главного государственного санитарного врача РФ от 04.07.2014 N 41 «Об утверждении СанПиН 2.4.4.3172-14 «Санитарно- эпидемиологические требования к устройству, содержанию и организации режима работы образовательных организаций дополнительного образования детей».

Для педагога дополнительного образования и обучающихся:

- Саранин В.А., Иванов В.Ю. Экспериментальные исследовательские задачи по физике 7-11 класс. - М.: Вако, 2015.

- Варламов С.Д., Зильберман А.Р., Зинковский В.И. Экспериментальные задачи на уроках физики и физических олимпиадах. М. Издательство МЦИМО, 2009.
- Лозовенко С.В., Трушина Т.А. Реализация образовательных программ по физике из части учебного плана, формируемой участниками образовательных отношений с использованием оборудования детского технопарка «Школьный Кванториум».- М.:2021.
- Кравченко Н.С. Методы обработки результатов измерений и оценки погрешностей в учебном лабораторном практикуме. Томск, 2011.

6 Лист изменения